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ABSTRACT: For a spherical inclusion embedded in an
infinite polymeric matrix, the Goodier Model, combined
with thermal stress contribution, is applied to establish the
stress/strain fields around a spherical particle in different
particle/matrix combinations, including TiO2, alumina, silica,
steel, polystyrene, and polyvinyl butyral particles embedded
in a range of polymeric matrices. This approach provides the
basis for examining the effects of different parameters such
as Young’s modulus and Poisson’s ratio of the particle and

matrix, and the thermal history of samples on the failure-ini-
tiation criteria. An explanation is provided for divergent
results obtained for very soft and elastic particles. VC 2012
Wiley Periodicals, Inc. J Appl Polym Sci 000: 000–000, 2012
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INTRODUCTION

Filled polymers are among the simpler types of com-
posite material, consisting of a matrix polymer, as the
continuous phase, and a discrete phase, generally
inorganic particulate and/or organic particulate,
(with or without organic/inorganic surface treat-
ment), dispersed in the matrix. Particulates, including
pigments and fillers are used to modify the various
properties of polymers (mechanical properties,
corrosion protection, conductivity, color appearance,
and etc.) that are of great importance to coating
composites.1,2

Whatever the intended purpose of the introduc-
tion of the filler, when particles are added to the
dispersed phase, the mechanical properties of the
resulting composite change. It is essential to have an
understanding of the dependence of such properties
on the composition in order to be able, effectively
and efficiently, to manipulate the system and, ulti-
mately, to obtain an optimal performance of the
composite. It is known that during the deformation
process of an unfilled polymer, stress builds up
at weak points in the matrix structure, resulting in
rupture or fracture of the polymer. This local rup-

ture then propagates through the bulk of the speci-
men. In a filled polymer, failure may be initiated at
the polymer/filler interface, within the polymer ma-
trix, as mentioned above, or within the particle
agglomerates.3 Focusing on failure at the polymer/
filler interface, the approach and analysis of Good-
ier4 has often been used for the calculation of stress
distribution around inclusions in the matrix. Good-
ier’s model assumes:

1. A single particle is embedded in a homogene-
ous, infinite matrix

2. There is perfect adhesion between the phases
3. There is an equilibrium of stresses and dis-

placements at the interface
4. There is a homogeneous external load.

In fact, the description of stresses that exist at the
interface of a spherical inclusion, submitted to a uni-
axial tensile field, is a two-part problem requiring
determination of;

1. The stresses at the interface because of the
applied stress field, using the Goodier’s model.

2. The thermal stresses at the interface due to differ-
ences in the coefficient of thermal expansivity.

Goodier’s derivation ignores the possible presence
of any stress that might exist around the spherical
inclusion prior to tensile straining. In reality, the
production of any composite featuring dissimilar
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elastic phases, results in thermal stresses at all exist-
ing interfaces. These residual stresses, caused by
differences in the thermal coefficient of expansivity
of the inclusions and the matrix, can develop in the
samples simply by heating them to the processing
temperature (e.g., curing temperature), and by cool-
ing them down from such a temperature.5–7 Besides,
throughout its lifetime, a coating composite system
is subjected to numerous thermal cycles.

Interfacial yielding in a filled composite occurs
when a critical limit, or ‘‘failure criterion’’ is reached.
The following represent the most common yield
criteria as applied to an isotropic material (uniform
properties in all directions):

1. Maximum principal strain. Yield occurs when
the maximum principal strain reaches the
strain corresponding to the yield point during
a simple tensile test.

2. Maximum principal stress. Yield occurs when
the largest principal stress exceeds the uniaxial
tensile yield strength.

3. Maximum dilation. On the basis of this criterion,
yielding occurs when the change in volume per
unit volume, referred to as dilation, reaches a
critical value.

4. Maximum strain energy. This criterion assumes
that the stored energy associated with elastic
deformation at the point of yield is independ-
ent of the specific stress tensor. Thus yield
occurs when the strain energy per unit volume
is greater than the strain energy at the elastic
limit in simple tension.

5. Maximum distortion energy or maximum prin-
cipal shear. This criterion is based on the deter-
mination of the distortion energy in a given
material, i.e., of the energy associated with
changes in the shape in that material. According
to this criterion, a given structural material is
safe as long as the maximum value of the distor-
tion energy per unit volume in that material
remains smaller than critical distortion energy
per unit volume.

To establish the locations of failure-initiation
according to the five criteria described above, one
needs to compute the distributions of principal
strain, the principal stress, dilatational strain, strain
energy, and distortion energy in the polymeric
matrix that surrounds the inclusion. The thermal
stress contribution to these criteria, are obtained
through combining the Goodier’s solution with
equations derived by Beck et al.8 and Wang et al.,9

as summarized in Appendix.
Although the model has been in existence for

some time, there has not been, to the best of
our knowledge, a parametric study addressing stress

distribution at the interface for a range of particle/
matrix combinations commonly used in coating
composite industry. In this work, the objective is to
provide a description of how changes in particle or
polymeric matrix properties changes the stress/
strain field at the interface and hence influences
failure development in a composite. Such reformula-
tions are common practice in the coating industry
for a variety of reasons, including changing the coat-
ing color through changing the pigment and coating
reinforcement via particle introduction. It is also
common to make changes in processing or coating
temperature. Descriptions of the effects of such
changes are important if one is to understand how
failure develops in a coating composite system. Such
understanding can positively contribute to design,
formulation as well as reformulation, processing and
performance of coating composites.

Modeling the stress distribution around
inclusions in the polymeric matrix

The approach here concerns a single spherical inclu-
sion embedded in an infinite polymeric matrix, as
treated by the Goodier model4 combined with the
contribution from thermal stresses, to establish the
failure criteria for such a system. Table I provides
the list of materials investigated and their physical
properties. To ascertain the failure criteria, equations
described in Appendix were solved as visual basic
macros in Excel.
Figure 1 shows the distribution of the criteria for

the interface of a TiO2 spherical particle in a poly
(methyl methacrylate) (PMMA) matrix under a
simple tension of T ¼ 20 MPa. The curves are plot-
ted over y ¼ 0� to y ¼ 90� as they are symmetric
with respect to the equatorial plane (y ¼ 90�) and
the polar axis (y ¼ 0�) of the TiO2 particulate.
Considering that the failure will initiate at

the interface/interphase between the matrix and the
particulate (with values larger than unity), the five
craze-initiation manifestations (Fig. 1) suggest that
the failure would initiate at different locations
(i.e., different maximal angles for different failure-
initiation manifestations).
Among these manifestations, the principal strain

and the strain energy characteristic properties have
been reported to agree best with the test data.9 In
particular, the concept of the principal strain crite-
rion seems to be plausible from the suggestion that
crazing is usually preceded by a certain degree of
local reorientation in molecular structures.10 Since
the molecular orientation is more directly related to
strain than that to stress or strain energy, if one
regards failure as a highly localized straining pro-
cess, then invoking the principal strain criterion
would seem to be more reasonable for describing
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the craze-initiation behavior than would considera-
tion of other criteria.9 Therefore, in the following
discussion, the principal strain will be regarded as
the main indicating criterion in obtaining failure-
initiation location on the particle surface.

The effect of particle characteristics

To establish whether or not the particle characteristics
such as its rigidity would influence the maximum
of the principal strain as a failure-initiation criterion,
the values of principal strain were calculated over
y ¼ 0� to y ¼ 90� for particles having different rigidity
values, moduli, and thermal expansion coefficients.

Figure 2 provides principal strain distributions
along the interface for different particles namely,
TiO2, alumina (alpha), silica, steel, Polyvinyl butyral,
and Polystyrene each embedded in a PMMA poly-
meric matrix at a tensile stress of T ¼ 20 MPa, over
y ¼ 0� to y ¼ 90�. As evidenced by the results, the
nature of particle plays an important role on how
the strain (as well as stress) is distributed around
the particle. Based on the principal strain distribu-
tion, three different categories can be identified:

1. Particles that are considerably softer than the
matrix (e.g., PVB particle embedded in a
PMMA matrix). The distribution of maxima for

Figure 1 The distribution of the failure initiation criteria around a single spherical TiO2 particle embedded in a PMMA
matrix at tensile stress of T ¼ 20 MPa and the temperature difference of �60�C over y ¼ 0� to y ¼ 90�. [Color figure can
be viewed in the online issue, which is available at wileyonlinelibrary.com.]

TABLE I
Physical Properties of Materials Used to Calculate the Craze-Initiation Criteria for a

Single Spherical Particulate That Is Embedded in an Infinite Polymeric Matrix

Material Function
Young’s

Modulus MPa
Poisson’s
Ratio

Thermal Expansion
Coefficient (�C)�1

TiO2 Filler 2.82Eþ05 0.28 7.00E-6
Alumina (alpha) Filler 3.70Eþ05 0.22 7.00E-07
Steel Filler 2.10Eþ05 0.28 1.08E-05
silica Filler 7.00Eþ04 0.17 9.00E-06
Polystyrene Filler/Matrix 3.20Eþ03 0.35 1.20E-04
PVB Filler/Matrix 9.50Eþ02 0.5 4.68E-04
Epoxy Matrix 2.40Eþ03 0.35 5.50E-05
PMMA Matrix 1.80Eþ03 0.35 7.50E-06
Polycarbonate Matrix 2.35Eþ03 0.37 6.80E-05
Polyimide Matrix 2.50Eþ03 0.34 4.50E-05
PP Matrix 1.20Eþ03 0.45 1.40E-04
PVC Hard Matrix 3.25Eþ03 0.38 8.75E-05
Nylon 6,6 Matrix 3.30Eþ03 0.41 9.00E-05
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this case is located close to the equator, and
therefore, one would expect, statistically, the
location for failure under tensile stress to be
around the equator.

2. Particles that are considerably harder than the
matrix (e.g., TiO2, alumina, silica, steel in
PMMA matrix). For this case, the maxima have
shifted about 50� towards the pole position.

3. Particle properties (mechanical and thermal)
are not significantly different from those of ma-
trix (e.g., a PS particle in a PMMA matrix). The
principal strain distribution for this case does
not change considerably over y ¼ 0� to y ¼ 90�

as noticed for the two previous categories.

Such observations can be generalized by recogniz-
ing that for particles that are far more rigid than the
continuous matrix, the failure will initiate at a loca-
tion that is farther than the equator position. For
particles that are softer than the matrix, failure initia-
tion will occur around the equator of particle in the
matrix.11

The effect of polymeric matrix characteristics

Given the diversity of different polymeric chemis-
tries used as the matrix in filled polymeric compo-
sites, we were also interested in the stress and strain
development around a single spherical particle
embedded in different polymeric matrices. Figure 3
provides the distribution of normalized principal
strain at a TiO2 spherical particle interface embed-
ded in different polymeric matrices. It is evident

that the nature of polymeric matrix plays an impor-
tant role in the strain (as well as stress) level that
builds at the interface as well as its distribution. The
peak max for the TiO2/PS system is about 50%
greater than the one for TiO2/PVB system. Assum-
ing the same adhesion strength for both interfaces,
the TiO2/PS interface would be more prone to fail-
ure when compared to the interface at TiO2/PVB or
TiO2/Polypropylene system. From the trend seen in
Figure 3, one can conclude that a greater value for
matrix Young’s modulus and a smaller value for
matrix Poisson’s ratio contribute to a larger strain
development at the rigid filler/polymer interface.
Another observation from Figure 3 is that by chang-
ing the polymeric matrix from PVB to PS, the loca-
tion of the maximum strain at the interface shifts by
about 10� towards the pole position.

The effect of thermal conditions

Since the thermal-expansion coefficients of the inclu-
sions and the matrix are different, thermal stresses
can develop in the samples simply on cooling
the samples from the processing temperature
(e.g., annealing or curing). For heat-cured coatings,
heating the inclusion-matrix sample up to the curing
temperature followed by cooling it down to the
room temperature, would also induce thermal
stresses into the system, due to the mismatch in the
thermal-expansion coefficients. To understand how
the thermal conditions may influence the strain
development around a particle embedded in a poly-
meric matrix (i.e., TiO2 in PMMA), its distribution at
the interface was calculated under different thermal
conditions. The results for the effect of thermal con-
ditions are presented in Figure 4.

Figure 2 The distribution of the normalized principal
strain around different particles each embedded in a
PMMA polymeric matrix over y ¼ 0� to y ¼ 90�. The mod-
eling was conducted for a tensile stress of T ¼ 20 MPa
and a temperature difference of Dt ¼ �60�C. [Color figure
can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

Figure 3 Distribution of normalized principal strain
around a TiO2 particle embedded in different polymeric
matrices. The modeling was conducted over y ¼ 0� to y ¼
90� for a tensile stress of T ¼ 20 MPa. The temperature
difference was �60�C. [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com.]
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As the system experiences a higher temperature
(Fig. 4), more strain (as well as stress) around the
inclusion develops, as evidenced by the area under
the distribution curve. The maximum principal
strain for TiO2/PMMA increases by 8% once sub-
jected to a process with a DT ¼ �100�C cooling step,
as opposed to an isothermal one. Another observa-
tion is that, through subjecting the system to a pro-
cess with a thermal history, the distribution becomes
more unsymmetrical over y ¼ 0� to y ¼ 90�, with
more strain developments at lower angles (angles
smaller than 65�) and a decrease in the strain level
at locations closer to the equator.

The effect of varying the external tension on the
stress/strain distribution at the particle/matrix inter-

face is shown in Figure 5, which depicts the distribu-
tion of the normalized principal stress around a
spherical TiO2 particle embedded in a PMMA
matrix. At higher loads, the normalized principal
stress decreases at locations closer to the pole, and
also the shape of principal stress over y ¼ 0� to y ¼
90�, becomes more symmetric with respect to the 45�

polar angle. It should be noted that the figure
depicts normalized stress values, which may be mis-
leading, in that while the absolute maximum value
of the principal stress increases, the normalized
value decreases. The principal stress distribution
without normalization has been plotted in Figure 6
as a function of different external loads. The infor-
mation in Figure 6 would be important from a com-
posite design standpoint, as a practical guideline for
the minimum required adhesion strength level
between particle and interface. For example for the
TiO2/PMMA composite system under a simple ten-
sile stress of 100MPa, the adhesion strength between
TiO2 particle and PMMA has to be above 186 MPa
to avoid debonding at the interface.
Considering that the particle/matrix adhesion is

uniform for all angles at the interface, failure would
start at the interface when the stress there exceeds a
critical value defined by the yield stress (or a strain)
exceeds critical strain value. Once failure is initiated
at the interface, the propagation path could be
through one or a combination of the following:

1. The bulk of the matrix
2. The bulk of particle
3. The particle/matrix interface

As a practical matter, the analysis is limited to
cases of moderate adhesion. When the adhesion is
very strong, the sample fails cohesively through the

Figure 4 The effect of thermally induced stress on the dis-
tribution of the normalized principal strain around the TiO2

particle that is embedded in a PMMA matrix. The modeling
was conducted over y ¼ 0� to y ¼ 90� for a tensile stress of
T ¼ 20 MPa. [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]

Figure 5 The distribution of the normalized principal
stress over y ¼0� to y ¼ 90� around a TiO2 particle embed-
ded in PMMA for different simple tension loads. The
modeling was conducted for a temperature difference of
�60�C. [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]

Figure 6 The distribution of the principal stress over y ¼
0� to y ¼ 90� around a TiO2 particle embedded in PMMA
for different external tensile loads. The modeling was con-
ducted for a temperature difference of �60�C. [Color fig-
ure can be viewed in the online issue, which is available
at wileyonlinelibrary.com.]

STRESS/STRAIN DEVELOPMENT AROUND A SPHERICAL INCLUSION 5

Journal of Applied Polymer Science DOI 10.1002/app



formation of crazes in the region of the maximum
principal stress.11 For typical filled coating compo-
sites, the interface is the weakest point, and hence
prone to crack propagation. For a rigid particle
embedded in a polymeric matrix (e.g., TiO2/PMMA),
once the cavitation develops at a location with maxi-
mum stress build-up (i.e., y � 30�), then for crack
propagation as the next phase, either one or a
combination of the following may happen in a two-
dimensional system:

1. The crack would propagate toward the equator
at the interface

2. The crack would propagate toward the pole at
the interface

On the basis of the stress and strain level distribu-
tion calculated, it seems that the crack would propa-
gate first toward the pole position, as this path is
experiencing higher stress level (or strain level) com-
pared to the one toward the equator. Besides, under
simple external tensile stress (shown in Fig. 1), the
perpendicular component for crack opening toward
pole is more pronounced than the one toward the
equator. Once the crack reaches the pole, a
debonded area in the shape of a cap develops
around the pole, and the stress would intensify in
the remaining intact area at the interface, which still
bears the stress. In the next phase, the crack would
propagate toward the equator.

In corroboration of the above statement are the
results of a test in which a single glass bead of 300
lm diameter was incorporated in a PVB matrix.5,6

Figure 7 shows the particle before and after failure
under stress, with the dark region showing the
debonded area. The authors reported that debonding
was observed to propagate from the polar region
toward the equator after decapping completion in
the polar region.
We were also interested in finding out the stress

and strain values at the particle/matrix interface for
systems in which the particle is much softer than the
matrix. Examples for this case include very soft rub-
ber particles incorporated in rigid polymeric matri-
ces and also air bubbles trapped in the polymeric
matrix. Under isothermal conditions, there is a sig-
nificant mismatch between matrix and particle in
terms of their Young’s moduli and Poisson’s ratios.
Assuming that a very soft particle has been incor-

porated in a PMMA matrix, different Young’s mod-
ulus and Poisson’s ratio values associated with these
particles (i.e., E ! 0 and m ! 0.5) were used to cal-
culate the principal strain at the particle/matrix
interface. Principal values are given in Table II. The
results indicate that the principal strain increases
significantly when the embedded particle become
softer (i.e., E ! 0 and m ! 0.5). The divergence
is caused as the denominators in Terms A and C
(eq. A9 and A10 in Appendix) approach zero. The
results may in fact be real, i.e., the principal strain

Figure 7 Glass spherical particle in a PVB matrix under the external stress (a) prior to crack propagation and (b) after
crack propagation.

TABLE II
Principal Values at 0 and 90� for Soft Particles of Different Young’s Moduli and Poisson’s Ratios Embedded

in PMMA Polymeric Matrix Under Isothermal Conditions (Dt 5 0�C)

m1 (Particle Poisson’s ratio) 0.5 0.5 0.5 0.5 0.4999 0.499 0.49 0.49 0.49 0.49
E1(Particle Young’s modulus) 0 0.001 0.1 1 0 0 0 1 10 100
Principal strain at 0� 1 524209.74 5243.15 525.27 969.83 98.34 11.19 11.00 9.61 4.61
Principal strain at 90� 1 524208.34 5241.75 523.87 968.43 96.94 9.79 9.60 8.20 3.20
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actually should diverge as the particle with a Poisson’s
ratio approaching 0.5, becomes significantly compli-
ant. However, the divergence in practice, especially
for the interfacial stress, may be unrealistic, owing to
possible shortcomings of the Goodier Model under
these conditions. Understanding the exact cause of
the apparent divergence needs further investigation.

In the context of present study, the following
remarks regarding the Goodier model should be
noted:

1. The particle is assumed to be spherical. In prac-
tice, for a particle, there would be a deviation
from being a perfect sphere, which would influ-
ence the results of the Goodier Model in terms of
stress distribution around the particle.12

2. The Goodier Model assumes only one particle
is incorporated in an infinite matrix. Particle-
filled composites represent much more com-
plex systems in which many particles are incor-
porated in the matrix in such a way that stress
field around each individual particle interacts
with those of the neighboring particles.13,14

Such interaction would change the stress distri-
bution outcome around each particle. The ma-
trix size in practice is not infinite, and therefore
the boundaries of interface would be influential
in the stress distribution within the composite
as well as in the composite response to the
external stress. The model also does not take
into account the role of particle size. This size
would be more influential if ratio of particle
size to composite size increases.

3. Particle aggregation is clearly beyond the scope
of the model. In practice, aggregates are pres-
ent to some extent in particle-filled composites.
Such a presence would result in wetting
anomalies caused by either particle/particle
touching or air pockets trapped between aggre-
gate particles. In either case, the stress distribu-
tion around each particle within the aggregate
would deviate from the one produced by the
model. Aggregates are known to function as
stress concentration centers in filled composite
systems, which can result in premature failure.

4. Despite its shortcomings, the Goodier Model
provides a platform for the incorporation of
additional parameters so that it may better rep-
resent real composite systems. This was the basis
for revisiting the modified Goodier Model in the
present study. The results clearly showed strong
dependence of stress/strain fields around parti-
cle on mechanical characteristics of both particle
and matrix and well as on the thermal history.

The authors thank Dr. Felix Nguyen from Toray Composites
for invaluable discussions.

APPENDIX

Goodier chose a spherical coordinate system (r, /, y)
with its origin at the center of inclusion and its polar
axis parallel to the applied load, T.4,8,9

The fundamental equation for the model is :

rruþ 1� 2mð ÞDu ¼ 0 (A1)

which must be solved under the following boundary
conditions:

umðRÞ ¼ upðRÞ (A2)

ðr̂ÞmðRÞ ¼ ðr̂ÞpðRÞ (A3)

Here, u is the displacement vector, ðr̂Þ the stress ten-
sor, m the Poisson’s ratio and R is the radius of the
inclusion. The superscripts p and m denote the filler
and the matrix respectively (Fig. A1).15

By taking into account the thermal stress that may
develop in the composites, the nonzero stress com-
ponents in the matrix, under a simple tension T,
may be written as11:

rr

T
¼ 4Ax3 � 20m2Bx

3 þ 24Bx5

þ 2B �10 5� m2ð Þx3 þ 36x5
� �� cos 2h

þ 1

2
1þ cos 2hð Þ þ 4G2Cx

3

3T
ðA4Þ

rh

T
¼ �2Ax3 � 20m2Bx

3 � 6Bx5

þ 2B 5 1� 2m2ð Þx3 � 21x5
� �� cos 2h

þ 1

2
1þ cos 2hð Þ � 2G2Cx

3

3T
ðA5Þ

Figure A1 Spherical coordinate system for a spherical
particle embedded in a matrix exposed to an external
stress, T. [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]

FA1
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r/

T
¼ �2Ax3 � 20 1� m2ð ÞBx3 � 18Bx5

þ 2B 15 1� 2m2ð Þx3 � 15x5
� �� cos 2hþ 2G2Cx

3

3T
(A6)

rrh

T
¼ � 20 1þ m2ð ÞBx3 � 48Bx5 þ 1

2

� �
sin 2h (A7)

Here, r is the distance from the origin to the point,
y is the angle between the positive x-axis and the
line from the origin point in the xy-plane and u is
the angle between the z-axis and the line from the
origin to the point (Fig. 1). G2 and m2 are the shear
modulus and the Poisson’s ratio of the matrix mate-
rial, respectively, and

x ¼ a=r

B ¼ 1

8

1� G

7� 5m2ð Þ þ 8� 10m2ð ÞG ðA8Þ

A ¼ B
2 1� 2m1ð Þ 6� 5m2ð Þ þ 3þ 19m1 � 20m1m2ð ÞG

2 1� 2m1ð Þ þ 1þ m1ð ÞG
þ 1

4

1 1� m2ð Þ 1þ m1ð Þ= 1þ m2ð Þ � m1 � 1� 2m1ð ÞG
2 1� 2m1ð Þ þ 1þ m1ð ÞG

(A9)

C ¼ a1 � a2ð Þ 1þ m1ð ÞGDt
2 1� 2m1ð Þ þ 1þ m1ð ÞG (A10)

Here, ‘‘r’’ is the radius from the center of the inclu-
sion, ‘‘a’’ is the radius of the inclusion, G ¼ G1=G2. G1

and m1 are, respectively, the shear modulus and the
Poisson’s ratio of the inclusion, Dt is the temperature
difference, and a1 and a2 are the linear thermal expan-
sion coefficients of the inclusion and the matrix,
respectively. G2 is the shear modulus of the matrix.

Noting that the stress components other than
those listed in eqs. (A4)–(A7) are zero, the principal
stresses (r1, r2, r3) at any point in the matrix may
be written as;

r1;2 ¼ 1

2
rr þ rhð Þ6 1

2
rr � rhð Þ2þ4r2

rh

h i1=2
(A11)

r3 ¼ r/ (A12)

The angle, a, of the direction of the principal
stress r1, measured from the radial direction is;

a ¼ 1

2
tan�1 2rrh

rh � rr

� �
(A13)

The principal shear stresses are:

s1 ¼ 1

2
r1 � r2j j (A14)

s2 ¼ 1

2
r2 � r3j j (A15)

s3 ¼ 1

2
r3 � r1j j (A16)

The maximum principal shear among the princi-
pal shear stresses is denoted by s.
The principal strains (e1,e2,e3) are obtained from

eqs. (A11)–(A12) by Hook’s law:

e1 ¼ r1

E2
� m2=E2ð Þ r2 þ r3ð Þ (A17)

e2 ¼ r2

E2
� m2=E2ð Þ r1 þ r3ð Þ (A18)

e3 ¼ r3

E2
� m2=E2ð Þ r1 þ r2ð Þ (A19)

Here, E2 is the Young’s modulus of the matrix
material. The dilational strain, D is then given by;

D ¼ e1 þ e2 þ e3 ¼ 1� 2m2
E2

r1 þ r2 þ r3ð Þ (A20)

In terms of the principal stresses, the strain energy
density, WS, and the distortion energy density WD

can be expressed as;

WS ¼ � m2
2E2

r1 þ r2 þ r3ð Þ2þ 1þ m2
2E2

r2
1 þ r2

2 þ r2
3

� �
(A21)

WD ¼ 12G2ð Þ�1 r1 � r2ð Þ2þ r2 � r3ð Þ2þ r3 � r1ð Þ2
h i

(A22)

It can be shown from the above, that the stresses
and the other quantities are uniformly distributed
throughout the rigid inclusion. The stress analysis
alone predicts a composite yield stress that is inde-
pendent of composition, the particle size and the
degree of adhesion and/or interaction between the
particle and the matrix.9
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